Atmospheric Composition Lab

The majority, $\mathbf{7 8 . 0 8 \%}$ of the Earth's atmosphere is made out of nitrogen. The atmosphere contains $20.95 \% \times x \times g e n, 0.93 \%$ argon, and that doesn't leave much room, $\mathbf{0 . 0 4 \%}$, for all the other gases found in the atmosphert We call hose extra gases, trace gases. It is easy to use percents and just talk about them, but do you truly yhderstand wathesepercents mean? Sometimes it helps to see percentages visually. Some trace gases are found in such small quantities, smallerthan ond percent, that scientists use another unit of measurement called parts per million, or ppm which is sed tomeasure the concentration of a substance, either in liquids or in gases.

1. Let's make sure you understand the math in percents of the graph paper below
a. How many large blocks are there altogether?
b. What percent of the entire graph paper is each large block equayto
c. What percent would each small block be equal to
d. How many small blocks are there altogether?
2. Use colored pencils or markers to color in the grid according to the quantity ofeach gas found/n the atmosphere. Color in the tiny squares in order. In other words, the lastlarge square should haye some oxygen, and all of the argon and trace gases in it. Create a color legend for the gases

Each large block in the graph prper could also be written as 1 part per 100.
3. One small block could by written as 1 part per

You should have fit some of the oxygen, all of the argon, and all of the trace gases fit into the last targe square. There are many different trace gases. Even though they are in very small quantities, they are extremely jmportant to the Earth's atmosphere. Some gases block out harmful radiation and some help plants grow. If these gases ingrease or deciease by too much, the balance of the Earth's atmosphere can be harmed. Each cell in the table below shoys how much some gas in ppm the atmosphere contains. Oxygen and argon are already colored. Color in the rest of the grid based on ppm of trese gases. | Argon $=9340 \mathrm{ppm}$ | Carbon Dioxide $=\sim 393 \mathrm{ppm}$ | Neon $=18 \mathrm{ppm}$ | Helium $=\sim 5 \mathrm{ppm}$ |
| :---: | :---: | :---: | :---: |
| Methane $=\sim 2 \mathrm{ppm}$ | Krypton $=\sim 1 \mathrm{ppm}$ | Hydrogem $=0.5 \mathrm{ppm}$ | Nitrous Oxide $=0.5 \mathrm{ppm}$ |
| Carbon Monoxide $=0.1 \mathrm{ppm}$ | Ozone $=0.07 \mathrm{ppm}$ | Nitrogen Dioxide $=0.03 \mathrm{pm}$ | | In order to visualize how little these amounts are, imagine zooming in on the last block, which is shaded, on the fist page and

then imagine turning that block into another 10,000 little blocks. That is yhat the grid, below represents.
4. Each tiny block in the first grid was equal to 0.01% or 1 part per en thousand. yow that we have zgomed in, what percent would each tiny block be now of the first grid? zoomed in on 100 tiny squares to create another 10,000.
For the amounts above fill in the grid below. Oxygen and argon have already bến filledin. Create a color legend.

[^0]6. What are the five greenhoyse gases?
7. About fow yarm would the planet be if we didn't have greenhouse gases?
8. Are greenhouse gases naturally bad for the atmosphere? Explain.

Teacher Notes, Instructions and Reflection

1. In this lab, students will represent amounts of atmospheric gases on graph paper, using colored pencils.
2. This assignment is not easy for students who do not have an understanding of percents and decimal places. For this reason and because my students come from a wide academic background, I split my class into groups of 2 to 4 students, so that those that struggle with the assignment, have a partner in which they can get help. I do have all student complete their own paper, however. Before, it was one paper per partnership, but this allowed students without a paper to sit and vegetate while their partner did all the coloring. I do let them collaborate together to come up with the same answers.
3. Caution your students to make sure they count the squares correctly. You will have students who won't though. Every year I have students make multiple mistakes because they miscount.
4. This assignment is meant to be done with little to no teacher intervention except to ask clarifying questions.
5. The temptation is to color in the squares quickly and poorly. If students do this correctly, they will get a really good representation of the gas amounts. I provided an answer key with how it should be correctly colored. I use these images later when we discuss the work that they just accomplished.
6. This is a highly adapted idea of an activity found on the Environmental Literacy and Inquiry Working Group website.

[^0]: 5. Notice thatitwas hrot possible to color in all of the trace gases. There are
 water vapor. What would we have to do, in order to visually represent thes
 Using
