Momentum and Impulse Problems

1. An ostrich with a mass of 146 kg is running to the right with a velocity of $17 \mathrm{~m} / \mathrm{s}$. Find the momentum of the ostrich.
2. A 21 kg child is riding a 5.9 kg bike with a velocity of $4.5 \mathrm{~m} / \mathrm{s}$ to the northwest.
a. What is the total momentum of the child and the bike together?
b. What is the momentum of the child?
c. What is the momentum of the bike?
3. A 0.50 kg football is thrown with a velocity of $15 \mathrm{~m} / \mathrm{s}$ to the right. A stationary receiver catches the ball and brings it to rest in .020 s . What is the force exerted on the receiver?
4. An 82 kg man drops from rest on a diving board 3 m above the surface of the water and comes to rest .55 s after reaching the water. What force does the water exert on him?
5. A 0.40 kg soccer ball approaches a player horizontally with a velocity of $18 \mathrm{~m} / \mathrm{s}$ to the north. The player strikes the ball and causes it to move in the opposite direction with a velocity of $22 \mathrm{~m} / \mathrm{s}$. What impulse was delivered to the ball by the player?
6. A 0.50 kg object is at rest. A 3 N force to the right acts on the object during a time interval of 1.5 s .
a. What is the velocity of the object at the end of this interval?
b. At the end of this interval, a constant force of 4 N to the left is applied for 3 s . What is the velocity at the end of the 3s.
7. A 2500 kg car traveling to the north is slowed down uniformly from an initial velocity of $20 \mathrm{~m} / \mathrm{s}$ by a 6250 N braking force acting opposite the car's motion. Use the impulse-momentum theorem to answer the following questions.
a. What is the car's velocity after 2.5 s ?
b. How far does the car move during 2.5 s?
c. How long doe sit take the car to come to a complete stop?
8. The speed of a particle is doubled.
a. By what factor is its momentum changed?
b. What happens to its kinetic energy?
9. Tyler claims he can throw a 0.145 kg baseball with as much momentum as a speeding bullet. Assume that a 3 g bullet moves at a speed of $1500 \mathrm{~m} / \mathrm{s}$.
a. What must the baseball's speed be if Tyler's claim is valid?
b. Which has greater kinetic energy, the ball or the bullet?
10. A 0.42 kg soccer ball is moving downfield with a velocity of $12 \mathrm{~m} / \mathrm{s}$. Palmer kicks the ball so that it has a final velocity of $18 \mathrm{~m} / \mathrm{s}$ downfield.
a. What is the change in the ball's momentum?

Momentum and Impulse Problems

1. An ostrich with a mass of 146 kg is running to the right with a velocity of $17 \mathrm{~m} / \mathrm{s}$. Find the momentum of the ostrich.
a. Given:
i. $\quad m=146 \mathrm{~kg}, \mathrm{v}=17 \mathrm{~m} / \mathrm{s}$ to the right, $\mathrm{p}=$????
b. Formula to use
i. $p=m v$
c. $\mathrm{p}=(146 \mathrm{~kg})(17 \mathrm{~m} / \mathrm{s})$
i. $\quad \mathrm{p}=2500 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$ to the right
2. A 21 kg child is riding a 5.9 kg bike with a velocity of $4.5 \mathrm{~m} / \mathrm{s}$ to the northwest.

Given: $m_{1}=21 \mathrm{~kg}, \mathrm{~m}_{2}=5.9 \mathrm{~kg}, \mathrm{v}=4.5 \mathrm{~m} / \mathrm{s}$ to the northwest
a. What is the total momentum of the child and the bike together?
i. Formulas to use

1. $\mathrm{p}_{\mathrm{tot}}=\mathrm{m}_{\mathrm{tot}} \mathrm{v}=\left(\mathrm{m}_{1}+\mathrm{m}_{2}\right) \mathrm{v}$
ii. $\quad \mathrm{t}_{\mathrm{tot}}=(21 \mathrm{~kg}+5.9 \mathrm{~kg})(4.5 \mathrm{~m} / \mathrm{s})$
iii. $\quad p_{\text {tot }}=(27 \mathrm{~kg})(4.5 \mathrm{~m} / \mathrm{s})$
iv. $\quad p_{\text {tot }}=120 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$ to the northwest
b. What is the momentum of the child?
i. Formulas to use
2. $p_{1}=m_{1} v$
ii. $\quad \mathrm{p}_{1}=21(\mathrm{~kg})(4.5 \mathrm{~m} / \mathrm{s})$
iii. $\quad p_{1}=94 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$ to the northwest
c. What is the momentum of the bike?
i. Formulas to use
3. $p_{2}=m_{2} v$
ii. $\quad p_{2}=(5.9 \mathrm{~kg})(4.5 \mathrm{~m} / \mathrm{s})$
iii. $\quad p_{2}=27 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$ to the northwest
4. A 0.50 kg football is thrown with a velocity of $15 \mathrm{~m} / \mathrm{s}$ to the right. A stationary receiver catches the ball and brings it to rest in .020 s . What is the force exerted on the receiver?
a. Given
i. $m=.50 \mathrm{~kg}, \mathrm{v}_{\mathrm{i}}=15 \mathrm{~m} / \mathrm{s}$ to the right, $\Delta \mathrm{t}=.020 \mathrm{~s}, \mathrm{v}_{\mathrm{f}}=0 \mathrm{~m} / \mathrm{s}$
b. Formulas to use

$$
F_{\text {onball }}=\frac{m v_{f}-m v_{i}}{\Delta t}=\frac{(0.50 \mathrm{~kg})(0 \mathrm{~m} / \mathrm{s})-(0.50 \mathrm{~kg})(15 \mathrm{~m} / \mathrm{s})}{0.020 \mathrm{~s}}
$$

ii. $\quad F_{\text {on ball }}=-380 \mathrm{~N}$ or 380 N to the left
iii. $\quad F_{\text {on receiver }}=-F_{\text {on ball }}=-(-380 \mathrm{~N})=380 \mathrm{~N}$ to the right
4. An 82 kg man drops from rest on a diving board 3 m above the surface of the water and comes to rest 0.55 s after reaching the water. What force does the water exert on him?
a. Given
i. $\quad \mathrm{m}=82 \mathrm{~kg}, \Delta \mathrm{y}=-3.0 \mathrm{~m}, \Delta \mathrm{t}=0.55 \mathrm{~s}, \mathrm{v}_{\mathrm{i}}=0 \mathrm{~m} / \mathrm{s}, \mathrm{a}=-9.81 \mathrm{~m} / \mathrm{s}^{2}$
b. Formulas to use
i. $\quad v_{f}= \pm \sqrt{2 a \Delta y}= \pm \sqrt{(2)\left(-9.81 m / s^{2}\right)(-3.0 m)}= \pm 7.7 \mathrm{~m} / \mathrm{s}=-7.7 \mathrm{~m} / \mathrm{s}$
c. Now let's calculate the force during the time the man is in the water.
i. Given

1. $v_{i}=7.7 \mathrm{~m} / \mathrm{s}$ downward $=-7.7 \mathrm{~m} / \mathrm{s}, \quad v_{f}=0 \mathrm{~m} / \mathrm{s}$
ii. Formulas to use
2. $F=\frac{m v_{f}-m v_{i}}{\Delta t}$
iii. $\quad F=\frac{(82 \mathrm{~kg})(0 \mathrm{~m} / \mathrm{s})-(82 \mathrm{~kg})(-7.7 \mathrm{~m} / \mathrm{s}}{0.55 \mathrm{~s}}$
iv. $\mathrm{F}=1100 \mathrm{~N}$ upward
3. A 0.40 kg soccer ball approaches a player horizontally with a velocity of $18 \mathrm{~m} / \mathrm{s}$ to the north. The player strikes the ball and causes it to move in the opposite direction with a velocity of $22 \mathrm{~m} / \mathrm{s}$. What impulse was delivered to the ball by the player?
a. Given
i. $m=0.40 \mathrm{~kg}, \mathrm{v}_{\mathrm{i}}=18 \mathrm{~m} / \mathrm{s}$ to the north (positive), $\mathrm{v}_{\mathrm{f}}=22 \mathrm{~m} / \mathrm{s}$ to the south (negative)
b. Formulas to use
i. $\quad \Delta p=m v_{f}-m v_{i}$
ii. $\quad \Delta \mathrm{p}=(0.40 \mathrm{~kg})(-22 \mathrm{~m} / \mathrm{s})-(0.40 \mathrm{~g})(18 \mathrm{~m} / \mathrm{s})$
iii. $\quad \Delta p=-8.8 \mathrm{~kg} \mathrm{~m} / \mathrm{s}-7.2 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
iv. $\Delta p=16 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$ to the south
4. A 0.50 kg object is at rest. A 3 N force to the right acts on the object during a time interval of 1.5 s .

Given: $\mathrm{m}=0.50 \mathrm{~kg}, \mathrm{~F}_{1}=3 \mathrm{~N}$ to the right, $\Delta \mathrm{t}_{1}=1.50 \mathrm{~s}, \mathrm{v}_{\mathrm{i}, 1}=0 \mathrm{~m} / \mathrm{s}, \mathrm{F}_{2}=4 \mathrm{~N}$ to the left (negative), $\Delta \mathrm{t}_{2}=3 \mathrm{~s}, \mathrm{v}_{\mathrm{i}, 2}=9 \mathrm{~m} / \mathrm{s}$ to the right (positive)
a. What is the velocity of the object at the end of this interval?
i. Formulas to use

$$
v_{f, 1}=\frac{F_{1} \Delta t_{1}+m v_{i, 1}}{m}=\frac{(3 N)(1.5 \mathrm{~s})+(0.50 \mathrm{~kg})(0 \mathrm{~m} / \mathrm{s})}{.50 \mathrm{~kg}}
$$

2. $\mathrm{v}_{\mathrm{f}, 1}=9 \mathrm{~m} / \mathrm{s}$ to the right
b. At the end of this interval, a constant force of 4 N to the left is applied for 3 s . What is the velocity at the end of the 3 s ?
i. Formulas to use
3.

$$
v_{f, 2}=\frac{F_{2} \Delta t_{2}+m v_{i, 2}}{m}=\frac{(-4 N)(3 \mathrm{~s})+(0.50 \mathrm{~kg})(9 \mathrm{~m} / \mathrm{s})}{.50 \mathrm{~kg}}
$$

$$
v_{f, 2}=\frac{-12 \mathrm{~kg} \bullet \mathrm{~m} / \mathrm{s}+4.5 \mathrm{~kg} \bullet \mathrm{~m} / \mathrm{s}}{0.50 \mathrm{~kg}}=\frac{-7.5 \mathrm{~kg} \bullet \mathrm{~m} / \mathrm{s}}{0.50 \mathrm{~kg}}=-15 \mathrm{~m} / \mathrm{s}
$$

3. $v_{f, 2}=15 \mathrm{~m} / \mathrm{s}$ to the left
4. A 2500 kg car traveling to the north is slowed down uniformly from an initial velocity of $20 \mathrm{~m} / \mathrm{s}$ by a 6250 N braking force acting opposite the car's motion. Use the impulse-momentum theorem to answer the following questions.
Given: $m=2500 \mathrm{~kg}, \mathrm{v}_{\mathrm{i}}=20 \mathrm{~m} / \mathrm{s}$ to the north (positive), $\mathrm{F}=6250 \mathrm{~N}$ to the south (Negative), $\Delta \mathrm{t}=2.50 \mathrm{~s}$
a. What is the car's velocity after 2.5 s ?
i. Formulas to use
5. $v_{f}=\frac{F \Delta t+m v_{i}}{m}=\frac{(-6250 \mathrm{~N})(2.5 \mathrm{~s})+(2500 \mathrm{~kg})(20 \mathrm{~m} / \mathrm{s})}{2500 \mathrm{~kg}}$
$v_{f}=\frac{\left(-1.56 \times 10^{4} \mathrm{~kg} \bullet \mathrm{~m} / \mathrm{s}\right)+\left(5 \times 10^{4} \mathrm{~kg} \bullet \mathrm{~m} / \mathrm{s}\right.}{2500 \mathrm{~kg}}=\frac{3.4 \times 10^{4} \mathrm{~kg} \bullet \mathrm{~m} / \mathrm{s}}{2500 \mathrm{~kg}}$
6. $\mathrm{v}_{\mathrm{f}}=14 \mathrm{~m} / \mathrm{s}$ to the north
b. How far does the car move during 2.5 s?
i. Formulas to use
7. $\Delta x=\frac{1}{2}\left(v_{i}+v_{f}\right)(\Delta t)=\frac{1}{2}(20 m / s+14 m / s)(2.5 s)$
8. $\Delta x=\frac{1}{2}(34 m / s)(2.5 s)$
9. $\Delta x=42 m$ to the north
c. How long does it take the car to come to a complete stop?
i. Formulas to use
10. $\Delta t=\frac{m v_{f}-m v_{i}}{F}=\frac{(2500 \mathrm{~kg})(0 \mathrm{~m} / \mathrm{s})-(2500 \mathrm{~kg})(20 \mathrm{~m} / \mathrm{s})}{-6250 \mathrm{~N}}=8 \mathrm{~s}$
11. The speed of a particle is doubled.
a. By what factor is its momentum changed?
i. Momentum increases by a factor of two
b. What happens to its kinetic energy?
i. kinetic energy increases by a factor of four
12. Tyler claims he can throw a 0.145 kg baseball with as much momentum as a speeding bullet. Assume that a 3 g bullet moves at a speed of $1500 \mathrm{~m} / \mathrm{s}$.
Given: $m_{1}=0.145 \mathrm{~kg}, \mathrm{~m}_{2}=3 \mathrm{~g}, \mathrm{v}_{2}=1500 \mathrm{~m} / \mathrm{s}$
a. What must the baseball's speed be if Tyler's claim is valid?
i. Formulas to use
13. $m_{1} v_{1}=m_{2} v_{2}$
ii. Solving for v_{1}, rearrange formula
14.

$v_{1}=\frac{m_{2} v_{2}}{m_{1}}=\frac{(0.003 \mathrm{~kg})(1500 \mathrm{~m} / \mathrm{s})}{0.145 \mathrm{~kg}}$
2. $v_{1}=31 \mathrm{~m} / \mathrm{s}$
b. Which has greater kinetic energy, the ball or the bullet?
i. Formulas to use

1. $K E_{1}=\frac{1}{2} m_{1} v_{1}^{2}=\frac{1}{2}(0.145 \mathrm{~kg})(31 \mathrm{~m} / \mathrm{s})^{2}=69.7 \mathrm{~J}$
2. $K E_{2}=\frac{1}{2} m_{2} v_{2}^{2}=\frac{1}{2}(0.003 \mathrm{~kg})(1500 \mathrm{~m} / \mathrm{s})^{2}=3380 \mathrm{~J}$
ii. $K_{2}>\mathrm{KE}_{1}$ Bullet has greater kinetic energy
3. A 0.42 kg soccer ball is moving downfield with a velocity of $12 \mathrm{~m} / \mathrm{s}$. Palmer kicks the ball so that it has a final velocity of $18 \mathrm{~m} / \mathrm{s}$ downfield.
a. What is the change in the ball's momentum?
i. Given:
4. $m=0.42 \mathrm{~kg}, \mathrm{v}_{\mathrm{i}}=12 \mathrm{~m} / \mathrm{s}$ downfield, $\mathrm{v}_{\mathrm{f}}=18 \mathrm{~m} / \mathrm{s}$ downfield, $\Delta \mathrm{t}=0.020 \mathrm{~s}$
ii. Formulas to use
5. $\Delta p=m v_{f}-m v_{i}$
6. $\Delta p=(0.42 \mathrm{~kg})(18 \mathrm{~m} / \mathrm{s})-(0.42 \mathrm{~kg})(12 \mathrm{~m} / \mathrm{s})$
7. $\Delta p=7.6 \mathrm{~kg} \mathrm{~m} / \mathrm{s}-5 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
8. $\Delta p=2.6 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$ downfield
