Momentum and Impulse Problems

- 1. An ostrich with a mass of 146kg is running to the right with a velocity of 17m/s. Find the momentum of the ostrich.
- 2. A 21kg child is riding a 5.9kg bike with a velocity of 4.5m/s to the northwest.
 - a. What is the total momentum of the child and the bike together?
 - b. What is the momentum of the child?
 - c. What is the momentum of the bike?

- 3. A 0.50kg football is thrown with a velocity of 15m/s to the right. A stationary receiver catches the ball and brings it to rest in .020s. What is the force exerted on the receiver?
- 4. An 82kg man drops from rest on a diving board 3m above the surface of the water and comes to rest .55s after reaching the water. What force does the water exert on him?
- 5. A 0.40kg soccer ball approaches a player horizontally with a velocity of 18m/s to the north. The player strikes the ball and causes it to move in the opposite direction with a velocity of 22m/s. What impulse was delivered to the ball by the player?
- 6. A 0.50kg object is at rest. A 3N force to the right acts on the object during a time interval of 1.5s.a. What is the velocity of the object at the end of this interval?
 - b. At the end of this interval, a constant force of 4N to the left is applied for 3s. What is the velocity at the end of the 3s.

- 7. A 2500 kg car traveling to the north is slowed down uniformly from an initial velocity of 20m/s by a 6250N braking force acting opposite the car's motion. Use the impulse-momentum theorem to answer the following questions.
 - a. What is the car's velocity after 2.5 s?
 - b. How far does the car move during 2.5s?
 - c. How long doe sit take the car to come to a complete stop?
- 8. The speed of a particle is doubled.
 - a. By what factor is its momentum changed?
 - b. What happens to its kinetic energy?
- 9. Tyler claims he can throw a 0.145kg baseball with as much momentum as a speeding bullet. Assume that a 3g bullet moves at a speed of 1500m/s.
 - a. What must the baseball's speed be if Tyler's claim is valid?
 - b. Which has greater kinetic energy, the ball or the bullet?
- 10. A 0.42kg soccer ball is moving downfield with a velocity of 12m/s. Palmer kicks the ball so that it has a final velocity of 18m/s downfield.
 - a. What is the change in the ball's momentum?

Momentum and Impulse Problems

- 1. An ostrich with a mass of 146kg is running to the right with a velocity of 17m/s. Find the momentum of the ostrich.
 - a. Given:
 - i. m=146kg, v=17m/s to the right, p=????
 - b. Formula to use
 - i. p=mv
 - c. p=(146kg)(17m/s)
 - i. p=2500kg m/s to the right
- 2. A 21kg child is riding a 5.9kg bike with a velocity of 4.5m/s to the northwest.
- **Given**: m_1 =21kg, m_2 =5.9kg, v=4.5m/s to the northwest
 - a. What is the total momentum of the child and the bike together?
 - i. Formulas to use
 - 1. $p_{tot}=m_{tot}v=(m_1+m_2)v$
 - ii. t_{tot} =(21kg+5.9kg)(4.5m/s)
 - iii. p_{tot}=(27kg)(4.5m/s)
 - iv. p_{tot} =120kg m/s to the northwest
 - b. What is the momentum of the child?
 - Formulas to use
 - 1. p₁=m₁v
 - ii. p₁=21(kg)(4.5m/s)
 - iii. $p_1=94$ kg m/s to the northwest
 - c. What is the momentum of the bike?
 - i. Formulas to use
 - 1. p₂=m₂v
 - ii. p₂=(5.9kg)(4.5m/s)
 - iii. $p_2=27$ kg m/s to the northwest
 - 3. A 0.50kg football is thrown with a velocity of 15m/s to the right. A stationary receiver catches the ball and brings it to rest in .020s. What is the force exerted on the receiver?
 - a. Given

i.

- i. m=.50kg, v_i=15m/s to the right, Δt =.020s, v_f=0m/s
- b. Formulas to use

i. $F_{onball} = \frac{mv_f - mv_i}{\Delta t} = \frac{(0.50kg)(0m/s) - (0.50kg)(15m/s)}{0.020s}$ ii. $F_{on ball} = -380$ N or 380N to the left

- iii. $F_{on receiver}$ =- $F_{on ball}$ =-(-380N)=380N to the right
- 4. An 82kg man drops from rest on a diving board 3m above the surface of the water and comes to rest 0.55s after reaching the water. What force does the water exert on him?
 - a. Given

- i. m=82kg, Δy=-3.0m, Δt=0.55s, v_i=0m/s, a=-9.81m/s²
- b. Formulas to use

i.

$$v_f = \pm \sqrt{2 a \Delta y} = \pm \sqrt{(2)(-9.81 m \, / \, s^2)(-3.0 m)} = \pm 7.7 m \, / \, s = -7.7 m \, / \,$$

- c. Now let's calculate the force during the time the man is in the water.
 - i. Given

1.
$$v_i=7.7$$
 m/s downward = -7.7 m/s, $v_f=0$ m/s

ii. Formulas to use

$$F = \frac{mv_f - mv_i}{\Delta t}$$

$$F = \frac{(82kg)(0m/s) - (82kg)(-7.7m/s)}{0.55s}$$

- iv. F=1100N upward
- 5. A 0.40kg soccer ball approaches a player horizontally with a velocity of 18m/s to the north. The player strikes the ball and causes it to move in the opposite direction with a velocity of 22m/s. What impulse was delivered to the ball by the player?
 - a. Given

iii.

- i. m=0.40kg, v_i =18m/s to the north (positive), v_f =22m/s to the south (negative)
- b. Formulas to use

$$\Delta p = mv_f - mv_i$$

- ii. $\Delta p = (0.40 \text{ kg})(-22 \text{ m/s}) (0.40 \text{ g})(18 \text{ m/s})$
- iii. Δp =-8.8kg m/s 7.2kg m/s
- iv. $\Delta p=16$ kg m/s to the south

6. A 0.50kg object is at rest. A 3N force to the right acts on the object during a time interval of 1.5s. Given: m=0.50kg, F_1 =3N to the right, Δt_1 =1.50s, $v_{i,1}$ = 0m/s, F_2 =4N to the left (negative), Δt_2 =3s, $v_{i,2}$ =9m/s to the right (positive)

- a. What is the velocity of the object at the end of this interval?
 - i. Formulas to use

$$v_{f,1} \!=\! \frac{F_1 \Delta t_1 \!+\! m v_{i,1}}{m} \!=\! \frac{(3N)(1.5s) \!+\! (0.50kg)(0m/s)}{.50kg}$$

- 2. $v_{f,1}$ =9m/s to the right
- b. At the end of this interval, a constant force of 4N to the left is applied for 3s. What is the velocity at the end of the 3s?
 - i. Formulas to use

$$v_{f,2} = \frac{F_2 \Delta t_2 + m v_{i,2}}{m} = \frac{(-4N)(3s) + (0.50kg)(9m/s)}{.50kg}$$

$$v_{f,2} = \frac{-12kg \bullet m/s + 4.5kg \bullet m/s}{0.50kg} = \frac{-7.5kg \bullet m/s}{0.50kg} = -15m/s$$

3. $v_{f,2}$ =15m/s to the left

7. A 2500 kg car traveling to the north is slowed down uniformly from an initial velocity of 20m/s by a 6250N braking force acting opposite the car's motion. Use the impulse-momentum theorem to answer the following questions.

Given: m=2500kg, v_i=20m/s to the north (positive), F=6250N to the south (Negative), Δ t=2.50s

- a. What is the car's velocity after 2.5 s?
 - i. Formulas to use

$$v_f = \frac{F\Delta t + mv_i}{m} = \frac{(-6250N)(2.5s) + (2500kg)(20m/s)}{2500kg}$$

$$v_f = \frac{(-1.56 \times 10^4 kg \bullet m/s) + (5 \times 10^4 kg \bullet m/s)}{2500kg} = \frac{3.4 \times 10^4 kg \bullet m/s}{2500kg}$$

- 3. $v_f = 14$ m/s to the north
- b. How far does the car move during 2.5s?
 - i. Formulas to use

1.
$$\Delta x = \frac{1}{2}(v_i + v_f)(\Delta t) = \frac{1}{2}(20m/s + 14m/s)(2.5s)$$

2.
$$\Delta x = \frac{1}{2}(34m/s)(2.5s)$$

- 3. $\Delta x=42m$ to the north
- c. How long does it take the car to come to a complete stop?
 - i. Formulas to use

1.
$$\Delta t = \frac{mv_f - mv_i}{F} = \frac{(2500kg)(0m/s) - (2500kg)(20m/s)}{-6250N} = 8s$$

- 8. The speed of a particle is doubled.
 - a. By what factor is its momentum changed?
 - i. Momentum increases by a factor of two
 - b. What happens to its kinetic energy?
 - i. kinetic energy increases by a factor of four
- 9. Tyler claims he can throw a 0.145kg baseball with as much momentum as a speeding bullet. Assume that a 3g bullet moves at a speed of 1500m/s.

Given: m₁=0.145kg, m₂=3g, v₂=1500m/s

- a. What must the baseball's speed be if Tyler's claim is valid?
 - i. Formulas to use
 - 1. $m_1v_1=m_2v_2$
 - ii. Solving for v_1 , rearrange formula

$$v_1 = \frac{m_2 v_2}{m_1} = \frac{(0.003 kg)(1500 m/s)}{0.145 kg}$$
2. v_1 =31m/s

- b. Which has greater kinetic energy, the ball or the bullet?
 - i. Formulas to use

1.
$$KE_1 = \frac{1}{2}m_1v_1^2 = \frac{1}{2}(0.145kg)(31m/s)^2 = 69.7J$$

2. $KE_2 = \frac{1}{2}m_2v_2^2 = \frac{1}{2}(0.003kg)(1500m/s)^2 = 3380J$

- 10. A 0.42kg soccer ball is moving downfield with a velocity of 12m/s. Palmer kicks the ball so that it has a final velocity of 18m/s downfield.
 - a. What is the change in the ball's momentum?
 - i. Given:
 - 1. m=0.42kg, v_i =12m/s downfield, v_f =18m/s downfield, Δt =0.020s
 - ii. Formulas to use
 - 1. $\Delta p = mv_f mv_i$
 - 2. $\Delta p=(0.42kg)(18m/s)-(0.42kg)(12m/s)$
 - 3. $\Delta p=7.6$ kg m/s-5kg m/s
 - 4. $\Delta p=2.6$ kg m/s downfield