Relative dating is not about taking a cousin out on a date, but rather dating objects based on information you might know about them. To the right is an example that demonstrates the principle of relative dating. Each of these tracks were laid down at a different time. By analyzing the image you can tell the order in which the tracks were made. Tracks were made by: a cat, a bird, a barefoot lady, a businessman, a tiny clown car, and a motorcycle.

1. Write a narrative of the sequence of events.
2. Define rock strata/stratum. If you don't remember what stramis $10 x$ it up.

There are many techniques used to relatively date rock stratum. On meth $\phi \mathrm{ds}$ is the Law of Superposition which states, "in undisturbed yayers of (ock, e oldest pocks are on the bottom and get younger in age as you move up the rock lay
3. On the image to the right, number the roqk strata 0 dest to youngest.
 Another relative dating method involves using "Ildex Fo (siv. .) didex fosspils help demonstrate how organisms might have changed, evolved over time. Index fossils are important in determining the ages strata. If we can find opt ab hut h) LN long ago specific fossils lived, then we can use that information to help date strata. A 2 million year $\langle\downarrow \delta$ sil found in a layer of limestone means the limestone layer was forming 2 million years ago.

In order to be an index fossil, the follopving rul 57 apply.

- Lived only during short pepiods of m$)$
- Very abundant
- Geographically widespead.

If we have two layers of limestone hy rut 5 miles apuay from each other, we can use index f(sils t) see thay they were deposited at approximately \sim sa time or not. The image to the right is an exampr $f \mathrm{wl}$ jindex fossils are important when dating rocks. Ask self, "What is the relative age of the bpttom la er the left sequence
 compared to the right botton of (q) Ince? We can't really tell without fossils of known yes.

Go to the following witorest//EarhScience.xyz/GC You will see layers of rock found in the Grand Canyon.. We don't really kngw how Jd these payers are so we need to find some index fossils. The task is to find the relative age of the roc trat rou d areas A, B, C, and D, on the image, finding fossils that you can use as index fossils. Use the attachq gogic time scale or go to http://EarthScience.xyz/GeoTime and the Fossil Book to help identify thp fos (ss fou ru in the ptrata: http://EarthScience.xyz/FossilBook1
4. Wha are the relatiye ages or periods of the rock strata for A, B, C, and D ?

> B.
C.
D.

Another method of finding the relative ages of strata, is to understand the Cross-Cutting Law which states: "Any feature that cuts across a body of rock is younger than the rock that it cuts across." Faults fan effset layers, which tells us that the fault happened after the layer was deposited. Intrusive magma, like dikeg, batholiths, and sills show that the layers had to have been there before magma could intrude.
Look at the following images and on the lines number each event from oldest rock layer to y angomblaye The
\#1 is oldest.

6.
 Understanding what unconformities are is also important in dating. Sometimes a stratigrapher, someone who studies rock strata, will discover strata missing because oो wed hering ahd erosion at some point in time. These gaps in relative time are called unconformities. There o 94 (e) types of unconformities.

The first type of unconformity, is a disconformity A d conformity is an erosional surface within a horizontal sedimentary sequence.
7. Look at the following image ahd on the number each event from oldest rock layer to youngest rock layer. \#1 is oldest. Don/t forge to wer the faults.

The second type of unconformity is called an angular unconformity. This occurs when rocks are tilted and folded, then eroded, and then other layers are deposited on top.
9. On the lines of the image to the right, number each layer from oldest rock to youngest rock. The \#1 is the oldest.
10. Highlight or trace over the angular unconformity?

The third type of unconformity, is the nonconformity. A nonconformity happens when igneous or metamorphic rock are uplifted, exposed, weathered, and then new layers of rock are deposited on top.
11. On the lines of the image to the right, number each layer from oldest rock to youngest rock. The \#1 is oldest.

Another part of unconformities is the Law of Inclusions. Inclusions are fragments of another rock incuded another layer of rock. It stayes that "this fragment must be older rock layer it is found in."
14. Below there are examples of each of the three types of unconformities. Label the unconformities below each image as either an angular unconformity, nonconformity, or a dis¢onformity.

You should now have a good understanding of relative dating and be able
of Superposition, index fossils, unconformities, inclusions, and cross cuttin

15. In the image below demonstrate your understanding by number ge correct geologic historical sequence of events. Start with \#1 as being the oldest roc爪 rat) m .

Geologic Time Scale

Dating the Relative Ages of Rock Strata

Relative dating is not about taking a cousin out on a date, but rather dating objects based on information you might know about them. To right is an example that demonstrates the principle of relative dating. Each of these tracks were laid down at a different time. By analyzing image you can tell the order in which the tracks were made. Tracks made by: a cat, a bird, a barefoot lady, a businessman, a tiny clown car, a motorcycle.

1. Write a narrative of the sequence of events.
2. Define rock strata/stratum. If you don't remember what strata is look it up.
a.
 demonstrate how organisms might have changed, adapted and evolved over time. Index fossils are important in determining the ages strata. lf we can find gut about how long ago specific fossils lived, then we can use that information to help date strata. A 2 million year old fossil found in a layer of limestone means the limestone layerwas forming 2 million years ago

In order to be an index fossil, the following rules must apply.

- Lived only during short periods of time.
- Very abundant
- Geographically widespread.

If we have two layers of limestone hundreds of miles away from each other, we can use index fossils to see that they were deposited at approximately the sametime or not. The image to the right is an example of why uindex fossils are important when dating rocks. Ask yourself, "What is the relative age of the bottom layer- on the left sequence compared to the right bottom sequence? We can't really tell without fossils of known ages. This is also called Rock Correlation.

Go to the following website: hitt:://EarthScience x yz/GC You will see layers of rock found in the Grand Canyon.. We don't really know how old these ldyers are so we need to find some index fossils. The task is to find the relative age of the rock strata around areas A, B, C, and D, ron the image, fipding fossils that you can use as index fossils. Use the attached geologic time scale or go to http://Earthseience.xyz/Geofime and the Fossil Book to help identify the fossils found in the strata: http://learthScience.xyztyossilBook1
4. What are the relative ages or periods of the rock strata for A, B, C, and D ?

Another method of finding the relative ages of strata, is to understand the Cross-Cutting Law which states: "Any feature that cuts across a body of rock is younger than the rock that it cuts across." Faults can offset layers, which tells us that the fault happened after the layer was deposited. Intrusive magma, like dikes, batholiths, and sills show that the layers had to have been there before magma could intrude.

Look at the following images and on the lines number each event from oldest rock layer to youngest rock layer. The \#1 is oldest.
5.

Understanding what unconformities are is also important in relative dating. Sometimes a stratigrapher, someone who studies rock strata, will discover strata missing because of weathering and erosion at some point in time. These gaps in relative time are called unconformities. There are three types of unconformities.

The first type of unconformity, is a disconformity. A disconformity is an erosfonal surface within a horizontal sedimentary sequence.
7. Look at the following image and on the lines, number each event from oldest rock layer to youngest rock layer.

8. Highlight ontrace over the disconformity.

The second type of unconformity is called an angular unconformity. This occurs when rocks are tilted and folded, then eroded, and then other layers are deposited on top.
9. On the lines of the image to the right, number each layer from oldest rock to young
a.

10. Highlight or trace over the angular unconformity?

The third type of unconformity, is the nonconformity. A nonconformity happens when igneous or metamorphic rock are uplifted, exposed, weathered, and then new layers of rock are deposited on top.
11. On the lines of the image to the right, number each layer from oldest rock to youngest rock. The \#1 is oldest.
a.

12. Highlight or trace over the nonconforr Another part of unconformities is the Law of Inclusions. Inclusions are fragments of another included in another layer of rock. It states that "th fragment must be older than the rack layer it is fo in."

14. Below there are examples of each of the three types of unconformities. Label the unconformities below each image as either an angular unconformity, nonconformity, or a disconformity.

Teacher Notes

1. I let my students work in groups of 1,2 , or 3 , but, because I want them to all have the practice and an ability to debate and question, they all get and turn in their own paper.
a. The discussion for the most part goes well.
2. This assignment takes 50 minutes and depending on the class, spills into another class hour.
3. After they have finished the assignment, we discuss the vocab that they should now know as well as some other images and examples from my website. http://earthscience.xyz/RealtiveDating
4. I also, for fun, read an article about a fake dinosaur. I preface it by telling them that another super dinosaur was found. Then I read the article. It is amazing how many students don't see that it is fake. By the end, I am busting up laughing so hard, that they get it. This article is the first linked image on the website mentioned above.
